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Abstract

This work concerns the development of a finite-element method for discretizing a recent second-gradient theory for the
flow of incompressible fluids. The new theory gives rise to a flow equation involving higher-order gradients of the velocity
field and introduces an accompanying length scale and boundary conditions. Finite-element methods based on similar
equations involving fourth-order differential operators typically rely on C1-continuous basis functions or a mixed
approach, both of which entail certain implementational difficulties. Here, we examine the adaptation of a relatively inex-
pensive, non-conforming method based on C0-continuous basis functions. We first develop the variational form of the
method and establish consistency. The method weakly enforces continuity of the vorticity, traction, and hypertraction
across interelement boundaries. Stabilization is achieved via Nitsche’s method. Further, pressure stabilization scales with
the higher-order moduli, so that the classical formulation is recovered as a particular limit. The numerical method is ver-
ified for the problem of steady, plane Poiseuille flow. We then provide several numerical examples illustrating the robust-
ness of the method and contrasting the predictions to those provided by classical Navier–Stokes theory.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

This work concerns a new finite-element method for discretizing a theory of incompressible fluid flow that
incorporates length scale effects through the introduction of higher-order gradients of the velocity field. This
‘‘second-gradient’’ theory of fluid flow developed by Fried and Gurtin [4] was suggested as a means to describe
behavior at length scales sufficiently small for deviations from classical Navier–Stokes theory to be conceiv-
able. The theory fundamentally introduces two new moduli associated with length-scale effects in the bulk
and near boundaries, and may also prove useful to describe flows over ‘‘rough’’ surfaces. A strong connection
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to the Lagrangian averaged Navier–Stokes-a (LANS-a) model of turbulence was later made by Fried and
Gurtin [5]. To date, only analytical solutions to simple model problems have been examined for the sec-
ond-gradient theory. The objective of this work is to advance a numerical method based on finite elements,
such that the predictions and applicability of the theory can be more fully examined.

The origins of the second-gradient theory of fluid flow can be traced back to Gurtin [1], who developed gen-
eral balance equations and associated boundary conditions for a ‘‘second-grade material’’ using a non-standard
form of the principle of virtual power. Gurtin’s work generalizes the early results provided by Toupin [2,3], who
developed analogous conditions for an elastic body whose strain energy depends on first and second gradients
of the deformation. The main contribution of Gurtin’s work is that it is independent of constitutive assump-
tions. As such, it is equally applicable to fluids as solids. Fried and Gurtin [4] recently adapted this framework
to develop a theory of fluid flow incorporating higher-order gradients of the velocity field. Subsequently, Fried
and Gurtin [5] established a connection to the LANS-a model. The LANS-a model of turbulence confers sev-
eral advantages over LES and Reynolds averaged models, including the preservation of non-linear coherent
structures (see the work of Holm et al. [6] for a synopsis). Aside from an extension of the Navier–Stokes equa-
tion involving higher-order gradients of the velocity field and involving an accompanying length scale, the
framework of the second-gradient theory provides consistent boundary conditions on free and fixed bound-
aries. The free boundary conditions involve the curvature of the free surface; among the conditions for a fixed
boundary are generalized adherence and slip conditions, each of which involves a material length scale.

Our current interest is focused on examining further the predictions that this second-gradient theory for
fluid flow provides. Accordingly, we discuss an advanced numerical method that is based on this new,
higher-order continuum theory. The challenges include properly incorporating the higher-order velocity gra-
dients and stabilizing the pressure field. The flow equation arising from the second-gradient theory involves
fourth-order partial derivatives. Hence, a standard Galerkin approximation requires C1-continuous basis
functions such that both the velocity field and its first derivatives are continuous. Examples include functions
based on Hermite polynomials. While relatively simple to construct on uniform meshes, unstructured meshes
present difficulties and certain partitions are not permissible with isoparametric versions of Hermite elements;
cf., e.g. Petera and Pittman [7]. Further, additional care is required to impose boundary conditions for a the-
ory stemming from a (classically) second-order problem using elements designed for fourth-order problems.
Mixed finite-element methods present a relatively expensive alternative, requiring separate approximations
for primary and secondary fields; cf., e.g. Fortin and Brezzi [8].

To overcome some of the drawbacks of these traditional methods, we adapt the continuous/discontinuous
Galerkin (CDG) method proposed by Engel et al. [9]. This is essentially a non-conforming method—as the
basis functions, while continuous, do not lie in the proper space for a strict Galerkin method. Continuity
requirements for the derivatives are weakly satisfied by borrowing concepts from discontinuous Galerkin
methods, in particular by extending the variational equation to include stabilization terms on interelement
boundaries. Engel et al. [9] successfully applied the method to solve problems involving fourth-order elliptic
operators arising from theories for thin beams and plates and strain gradient elasticity. Here, we develop a
comparable formulation for a gradient theory for the flow of incompressible fluids.

The CDG method we employ here builds upon important concepts from the discontinuous Galerkin (DG)
literature, in particular those schemes designed for spatial (as opposed to temporal) discontinuities. Much of
this work is associated with problems in fluid mechanics. Bassi and Rebay [14] proposed a DG method for solv-
ing the Euler equations, which led to subsequent developments for the Navier–Stokes equations. Their method
was generalized by Cockburn and Shu [17] for non-linear hyperbolic conservation laws, and later analyzed by
Brezzi et al. [15]. Additional work concerns the hp-adaptive DG method of Bey and Oden [16] for first order
problems. We refer the interested reader to the review provided in Engel et al. [9] for additional background.

The aforementioned DG methods approached second-order problems by rewriting the equations as a sys-
tem of coupled, first-order equations. The work we present in this paper is more closely tied to an alternative
approach introduced for elliptic and parabolic problems by Nitsche [11]. A similar effort to consistently embed
constraints into a weak form was proposed by Babuška [12]. Dupont and Dupont [13] subsequently built upon
Nitsche’s method to develop interior penalty methods for linear second-order elliptic and parabolic equations.
Baumann’s [18] work on a discontinuous finite element method for fluid mechanics also relies on concepts that
can be traced back to the work of Nitsche.
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The outline of this paper is as follows. In the next section, we introduce general balance equations and the
boundary conditions developed by Fried and Gurtin [5]. Section 3 describes the weak formulation for the
newly developed flow equations. In Section 4, we introduce the non-conforming variational formulation
and discretization with finite elements for the second-gradient theory. Numerical examples investigating the
performance of the method are provided in Section 5. Finally a summary and concluding remarks are given
in Section 6.
2. Governing equations

We work with the generalized equations for fluid flow introduced by Fried and Gurtin [5]. The theory is
based on a non-standard form of the principle of virtual power provided by Gurtin [1]. The principle of virtual
power is used as a basic tool in determining the structure of the tractions and of the local force balances. Clas-
sically, the power expended within an arbitrary control volume R in the region of space occupied by the
deformed body has the simple form
WintðRÞ ¼
Z

R
T : gradv dv ¼

Z
R

T ijvi;j dv ð1Þ
with T the Cauchy stress and T:grad v the stress power. Fried and Gurtin [5] (see also Fried and Gurtin [4])
generalize the classical theory by including, in the internal power, a term linear in the gradient gradx of the
vorticity x = curl v. Specifically, a second-order tensor-valued hyperstress G is introduced via an internal
power expenditure of the form G:gradx. The internal power expended within R then becomes
WintðRÞ ¼
Z

R
ðT : gradvþG : gradxÞdv ¼

Z
R
ðT ijvi;j þ Gijxi;jÞdv: ð2Þ
In conjunction with the internal power expenditure (2), Fried and Gurtin [5] introduce a corresponding exter-
nal power expenditure
WextðRÞ ¼
Z
S

tS � vþmS �
ov

on

� �
daþ

Z
R

b � vdv ð3Þ
in which tS and mS represent tractions on the bounding surface S ¼ oR of R, while b represents the net inertial

and non-inertial body force acting within the body. Here the term
mS �
ov

on
;

which is not present in classical theories, is needed to balance the effects of the internal-power term G:gradx,
which involves the second gradient of v.

The principle of virtual power replaces v by ~v and x by curl~v and is based on the requirement that
WextðR;~vÞ ¼WintðR;~vÞ ð4Þ

for all control volumes R and any choice of the virtual velocity field ~v. Consequences of the virtual power prin-
ciple and the requirement that the internal power expenditure be frame-indifferent are that:

(i) The classical macroscopic balance q _v ¼ divT must be replaced by the balance
q _v ¼ divTþ curldivG ð5Þ

with T symmetric as in the classical theory.

(ii) Cauchy’s classical condition tS ¼ Tn for the traction across a surface S with unit normal n must be
replaced by the conditions
tS ¼ Tnþ divSðGn�Þ þ n� ðdivG� 2KGnÞ;
mS ¼ n�Gn

�
ð6Þ
in which divS is the divergence operator on S and K ¼ � 1
2
divSn is the mean curvature of S.



554 T.-Y. Kim et al. / Journal of Computational Physics 223 (2007) 551–570
In (5), v is subject to the incompressibility constraint
1 To
term is
divv ¼ 0; ð7Þ

_v ¼ ov=ot þ ðgradvÞv (often written as Dv/Dt) is the material time derivative of v, p is the pressure, and D is the
Laplace operator. In (6)2, w· denotes the axial tensor of a vector w, as defined via the requirement that
ðw�Þu ¼ w� u
for all vectors u; alternatively, given an orthonormal Cartesian basis {e1,e2,e3} and using �ijk to denote the
alternating symbol,
ðw� Þij ¼ ei � ½ðw�Þej� ¼ �ikjwk:
When supplemented by constitutive equations for the stress and hyperstress, the balance (5) yields a flow equa-
tion. Consistent with (7), we restrict attention to incompressible fluids and invoke the standard decomposition
T ¼ S� p1; trS ¼ 0 ð8Þ

of the stress into a traceless extra stress S and a powerless pressure p. Further, we take the extra stress to be of
the form
S ¼ 2lD; l > 0; ð9Þ

where D ¼ 1

2
ðgradvþ ðgradvÞ>Þ is the stretch-rate.1 Further, we take the hyperstress to be of the simple linear

form
G ¼ lL2ðgradxþ iðgradxÞ>Þ ð10Þ

with �1 6 i 6 1 to ensure non-negative dissipation. Without loss of generality, we take L > 0. Following Fried
and Gurtin [4], we refer to L as the gradient length.

Using (8)–(10) in (5) and assuming that l, L, and i are constant, we arrive at the flow equation
q _v ¼ �gradp þ lDðv� L2DvÞ; ð11Þ
which, in Cartesian components, has the equivalent form q _vi ¼ �p;i þ lðvi � L2vi;kkÞ;jj.
In addition to the flow equation, the theory also provides boundary conditions. In particular, the classical

no-slip boundary boundary condition is replaced by the generalized adherence conditions
v ¼ 0 and mS ¼ �llx� n ð12Þ

in which the constitutive modulus l P 0, the adherence length, measures the strength of the fluid’s adherence
to the boundary. Alternatively, the theory provides conditions at solid boundaries with slip and conditions at
free surfaces, each of which involves the introduction of an additional constitutive parameter. While it does
not enter the flow equation (11), the parameter i may, in general, enter the boundary condition (12)2.

Whereas the quantities lL2 and ll admit obvious interpretations as a hyperviscosity and a boundary vis-
cosity, respectively, the parameter i is a measure of the asymmetry of the hyperstress. Effects associated with
any asymmetry of the hyperstress can therefore be felt only at the boundary of the flow domain. See Fried and
Gurtin [4,5] for a comprehensive justification and discussion of the constitutive equations (9) and (10) and the
boundary conditions (12).

Within the context of the kinetic theory, the Knudsen number Kn is defined as the ratio of the mean free
path to a representative length scale for the flow domain. Conventionally, Navier–Stokes theory is thought to
provide a physically faithful description of flow phenomena only for sufficiently small values of Kn. If we use ‘
to denote a representative length scale for the flow domain, we might therefore expect that the ratios L/‘ and l/
‘ determined by the gradient and adherence lengths would be of O(Kn). Only in problems where these ratios
are sufficiently large would the additional terms appearing in the flow equation (11) and the boundary condi-
tion (12)2 be of importance.
encompass the NS-a model, Fried and Gurtin [5] include a term proportional to the corotational rate of D in the extra stress. That
neglected here.
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3. Variational formulation

Because the general flow equation (5) and boundary conditions (6) follow from the application of the prin-
ciple of virtual power, it is fairly straightforward to derive a variational formulation of the flow equation and
the boundary conditions (12). Here rather than using an arbitrary control volume R, we work with the region
B occupied by the body at a fixed time t.

We consider boundary conditions in which a portion Sfree of oB is free and the remainder Sfxd is fixed:
Tnþ divSðGn�Þ þ n� divG ¼ rKn

and n�Gn ¼ 0

�
on Sfree;

v ¼ 0 and n�Gn ¼ �llx� n on Sfxd;

9=; ð13Þ
cf. (12). Here, r denotes the surface tension.
We refer to an arbitrary virtual velocity field ~v as kinematically admissible if
~v ¼ 0 on Sfxd: ð14Þ

Given such a field, we consider the virtual-power balance (4) applied with R = B, neglecting (non-inertial)
body forces, and with the replacements indicated by
tS ! rKn and mS ! 0 on Sfree; mS ! �llx� n on Sfxd: ð15Þ

We write V and P for the spaces of admissible velocity and pressure fields, respectively. The two-field vari-
ational form reads: find ðv; pÞ 2V�P such that
T ðv; p;~v; ~pÞ ¼ ‘ð~vÞ ð16Þ

for all ð~v; ~pÞ 2V�P, where
T ðv; p;~v; ~pÞ ¼
Z

B
ðS : grad~vþG : grad curl~vÞdvþ

Z
Sfxd

ðllx� nÞ � o~v

on
da�

Z
B

p div~vdv

�
Z

B
~p divvdv�

Z
B

q_v � ~vdv ð17Þ
and
‘ð~vÞ ¼
Z
Sfree

rKn � ~vda: ð18Þ
To obtain correspondence with the particular flow equation (11), S and G are given by (9) and (10),
respectively.

4. Discretization of the second gradient theory

In this section, we introduce our numerical formulation for the second-gradient theory. Our work is based on
the non-conforming method proposed by Engel et al. [9]. In this approach, the basis functions are C0-continu-
ous—so that their first and higher-order derivatives are discontinuous. Continuity of the first and higher-order
derivatives is weakly enforced by adding weighted residual terms to the variational equation on element bound-
aries and invoking stabilization techniques. The number of unknowns per element arising for this method is con-
siderably fewer than for alternatives based on traditional strategies such as C1-continuous basis functions.

The spaces of admissible velocity and pressure fields are V � H 2ðBÞ and P � H 0ðBÞ, where Hm(B) denotes
the classical Sobolev space of order m. We use a non-conforming Galerkin method to approximate the solu-
tion to (16), and we state the weak form of the variational problem in terms of finite-dimensional spaces
Vh � H 1ðBÞ and Ph � P.

To construct the bases, we consider a regular finite-element partition Qh ¼ [M
e¼1Qe, with Qh � B and M the

total number of elements in the mesh. We choose approximation functions which are continuous on the entire
domain but discontinuous in first and higher-order derivatives across element boundaries. Further, we con-
sider element interiors eQ defined via
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e¼[M
e¼1

Qe: ð19Þ
The union eC of interior boundaries is expressed as
eC ¼[Ni

i¼1

Ci; ð20Þ
where Ni denotes the number of element interior boundaries. In two dimensions, these refer only to those ele-
ment edges that are shared by two spatially adjacent elements, and do not include edges along the physical
boundary oB. Given a field f on B, the jump sfb of f across the interior boundary is defined as
sf t ¼ f þ � f �; ð21Þ

where
f � ¼ lim
�!0

f ðx	 �nÞ ð22Þ
and n is any of the two unit normals to the interior boundary and � > 0. The jump operator is graphically de-
scribed in Fig. 1. The average hhfii of f across the interior boundary is defined as
hhf ii ¼ 1

2
ðf þ þ f �Þ: ð23Þ
From the definitions of the jump and average operators, we have the useful identity
sfgt ¼ sf thhgii þ hhf iisgt: ð24Þ

The method we propose to approximate the solution to flow problems arising from the second-gradient theory
can then be stated as: find ðvh; phÞ 2Vh �Ph such that
T cdðvh; ph;~vh; ~phÞ ¼ ‘cdð~vhÞ; 8ð~vh; ~phÞ 2Vh �Ph; ð25Þ

where the bilinear form Tcd is defined via
T cdðvh; ph;~vh; ~phÞ ¼
Z
eQ ðSh : grad~vh þGh : gradcurl~vhÞdv�

Z
eC hheGhnii � scurlvhtda

�
Z
eC scurl~vht � hhGhniidaþ sv

Z
eC scurl~vht � scurlvhtda�

Z
eQ ph div~vh dv

�
Z
eQ ~ph divvhdv�

Z
eQ q _vh � ~vh dvþ

Z
Sfxd

ðllx� nÞ � o~vh

on
da ð26Þ
and the linear form ‘cd is defined via
‘cdð~vhÞ ¼
Z
Sfree

rKn � ~vh da: ð27Þ
In (26), sv denotes the velocity stabilization parameter for the interelement boundaries. The basic structure of
this stabilized approach follows from Nitsche’s method [11] for enforcing constraints on interfaces.
Fig. 1. Graphical description of jump operator.
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We remark that the imposition of generalized adherence boundary conditions on fixed surfaces does not
require a priori knowledge of the vorticity field on those surfaces. The generalized boundary conditions are
enforced as a Robin-type, and we need only to express the vorticity in terms of the approximation to the veloc-
ity field, i.e.
x ¼ curl vh: ð28Þ

From dimensional arguments, we can infer that the parameter sv should be CvlL2/he where he is the charac-
teristic size of the element edge, and Cv is a proportionality constant. Such a scaling with mesh spacing is likely
the minimum requirement to maintain convergence, and is consistent with error estimates provided in Engel
et al. [9]. We expect the optimal proportionality constant to be a function of the particular choices of bases for
the velocity and pressure fields. While the proportionality constant can be determined analytically in some
cases, at present there does not exist a general approach. In Section 5, we explore a strategy based on solutions
to benchmark problems.

Many of the jump terms appearing in (26) stem from the divergence theorem as applied to volume integrals
over individual elements (see the following proof of consistency). In particular, surface integrals involving nor-
mal flux quantities (such as Tne or Gne) arise over the boundary of each element Qe, where ne denotes the unit
outward normal to Qe. Since adjacent elements possess equal and opposite normal vectors along common inte-
rior boundaries, the choice of positive normal (and thus positive side) is arbitrary for any given pair. However,
the particular choice of normal for any given edge does not affect the final result, as the normal always appears
in the conjugate term in all inner-product forms in (26). For consistency, it is important that once a positive
side is identified on a given element interior, it is identified as such for each of the jump terms appearing in
(26).
4.1. Consistency

The consistency of the method is derived through successive application of the divergence theorem to (25).
Using the equality (24), we derive
Z

eQ Th : grad~vh dv ¼ �
Z
eQ divTh � ~vh dvþ

Z
S

Thn � ~vh daþ
Z
eC sThn � ~vhtda

¼ �
Z
eQ divTh � ~vh dvþ

Z
S

Thn � ~vh daþ
Z
eC ðsThnt � hh~vhii þ hhThnii � s~vhtÞda:
Similarly, the divergence theorem applied twice yields
Z
eQ Gh : gradcurl~vh dv ¼ �

Z
eQ ðdivGhÞ � ðcurl~vhÞdvþ

Z
S

Ghn � curl~vh daþ
Z
eC sGhn � curl~vhtda

¼ �
Z
eQ ðcurldivGhÞ � ~vh dvþ

Z
S

ðGhn � curl~vh þ ðn� divGhÞ � ~vhÞda

þ
Z
eC ðsGhn � curl~vhtþ sðn� divGhÞ � ~vhtÞda

¼ �
Z
eQ ðcurldivGhÞ � ~vh dvþ

Z
S

ðGhn � curl~vh þ ðn� divGhÞ � ~vhÞda

þ
Z
eC ðsGhnt � hhcurl~vhii þ hhGhnii � scurl~vhtÞdaþ

Z
eC ðsn� divGh

t � hh~vhii

þ hhðn� divGhÞii � s~vhtÞda:
Since ~vh is continuous on the interelement boundary eC, we have s~vht ¼ 0, yielding
Z
eQ Th : grad~vh dv ¼ �

Z
eQ divTh � ~vh dvþ

Z
S

Thn � ~vh daþ
Z
eC sThnt � hh~vhiida ð29Þ
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and
 Z
eQ Gh : gradcurl~vh dv

¼ �
Z
eQ ðcurldivGhÞ � ~vh dvþ

Z
S

ðGhn � curl~vh þ ðn� divGhÞ � ~vhÞdaþ
Z
eC ðsGhnt � hhcurl~vhii

þ hhGhnii � scurl~vhtÞdaþ
Z
eC sn� divGht � hh~vhiida: ð30Þ
Here, we take advantage of the equality
Z
S

Ghn � curl~vhda ¼
Z
S

ðdivSðGhn�Þ � 2Kn�GhnÞ � ~vh þ ðn�GhnÞ � o~vh

on

� �
da: ð31Þ
A detailed derivation of this equality is provided by Fried and Gurtin [5].
The consistency of the method then follows upon substituting the results (29)–(31), into (26), viz.
0 ¼ T cdðvh; ph;~vh; ~phÞ � ‘cdð~vhÞ

¼
Z
eQ ðcurldivGh þ divTh � q _vhÞ � ~vh dv�

Z
eC hheGhnii � scurl vhtdaþ

Z
eC sThnþ n� divGh

þ divSðGhn�Þ � 2Kn�Ghnt � hh~vhiidaþ
Z
eC sn�Ghnt � o~vh

on

� �� �
da

þ
Z
Sfree

ðThnþ n� divGh þ divSðGhn�Þ � 2Kn�Ghn� rKnÞ � ~vh daþ
Z
Sfree

ðn�GhnÞ � o~vh

on
da

þ
Z
Sfxd

ðn�Ghn� llx� nÞ � o~vh

on
daþ sv

Z
eC scurl~vht � scurlvhtda: ð32Þ
From (32) we deduce the second gradient equations
divTh þ curldivGh ¼ q _vh in eQ; ð33Þ

Thnþ n� divGh þ divSðGhn�Þ � 2Kn�Ghn ¼ rKn

and n�Ghn ¼ 0

)
on Sfree;

n�Ghn ¼ �llx� n on Sfxd;

9>=>; ð34Þ
and the jump conditions
scurl vht ¼ 0;

sThnþ n� divGh þ divSðGhn�Þ � 2Kn�Ghnt ¼ 0;

sn�Ghnt ¼ 0;

9>=>; on eC: ð35Þ
While (33) enforces the flow equation on the element interiors, (34) enforces the boundary conditions on free
and fixed surfaces of the flow domain, (35)1 ensures the continuity of the first derivatives across the interele-
ment boundaries, and (35)2,3 ensure the continuity of the tractions across the interelement boundaries. On
replacing v and p in (25) by vh and ph, we obtain the Galerkin orthogonality condition
T cdðev; ep;~v
h; ~phÞ ¼ 0 8ð~vh; ~phÞ 2Vh �Ph; ð36Þ
where ev = vh � v and ep = ph � p are the errors for the velocity and pressure fields, respectively.

4.2. Element choice and additional pressure stabilization

We restrict attention to problems for which the inertial terms appearing in (26) can be neglected. Extensions
to time-dependent flows and the non-linearities associated with the material derivative of the velocity field for
the second gradient theory are left for a future work. We will base our formulation on one that is stable for the
classical theory, namely: nine-node isoparametric quadrilateral elements with piecewise-quadratic basis
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functions for the velocity field and linear (discontinuous) basis functions for the pressure field. Three-dimen-
sional generalizations of these elements are readily available and widely used in practice.

To begin, we introduce the space
P jðQeÞ ¼ fv : v is a polynomial of degree 6 j on Qeg ð37Þ

of complete polynomials over element Qe. Using N to denote the number of nodes in the mesh, we then write
f/Ig ¼ f/I 2 C0ðQhÞ : /I jQe 2 P 2ðQeÞg; I ¼ 1 . . . N ð38Þ

for the set of quadratic Lagrangian isoparametric functions. The approximation to the velocity field is then
given by
vhðxÞ ¼
XN

I¼1

/IðnðxÞÞvI ; ð39Þ
where vI is the nodal value at node I and n is the position in a reference element.
For the pressure field, we introduce the set
fMIg ¼ fMI 2 H 0ðQhÞ : MI jQe 2 P 1ðQeÞg; I ¼ 1 . . . M ð40Þ

of linear element-based (discontinuous) shape functions. The approximation to the pressure field p can then be
written as
phðxÞ ¼
X

I

MIðxÞpI : ð41Þ
The approximations (39) and (41) over quadrilateral elements are stable for the classical problem of Stokes
flow; cf., e.g. Hughes [10]. We therefore expect stability to also hold for sufficiently small gradient lengths
L. However, for larger gradient lengths, we should not necessarily expect these elements to be stable. Accord-
ingly, we investigate the use of additional pressure stabilization. In particular, we follow the approach of
Hughes and Franca [19] and add terms of the form
�
X
e2eC sp

Z
e

sphts~phtda ð42Þ
to the non-conforming approximation (26), where sp is the pressure stability parameter. Similar to the velocity
stability parameter sv, we expect this parameter to take the form CplL2/he, where he is the characteristic length
of the element edge, and Cp is another proportionality constant. Importantly, the addition of this term does
not affect the consistency proof presented earlier; indeed, this term weakly enforces continuity of the pressure
field between elements.

To approximate the weight functions ~vh and ~ph, we use expansions analogous to (39) and (41). Upon substi-
tuting these expressions into (26) (neglecting inertial terms) and invoking the arbitrariness of the weight func-
tions, we obtain the linear algebraic system of equations
Kc þ Kg Gc

GT
c S

� �
dv

dp

� �
¼

fv

fp

� �
; ð43Þ
which can be solved to yield dv and dp.

5. Numerical examples

5.1. Benchmark problem: plane Poiseuille flow

We consider the problem of steady, laminar flow through an infinite, rectangular channel formed by two
parallel surfaces separated by a gap h (Fig. 2). Writing
u ¼ v � ex; v ¼ v � ey ð44Þ



Fig. 2. Schematic of the channel for the problem of plane Poiseuille flow. The coordinates in the directions downstream and out of the
plane are x and z.
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for the horizontal and vertical components of the velocity field, we consider problems with solutions of the
form
u ¼ uðyÞ; v ¼ 0 ð45Þ

as shown in Fig. 2. An analytical solution to this problem for the flow equation (11) with generalized adher-
ency conditions (12) was developed by Fried and Gurtin [4] for a theory different from that considered here.
Nevertheless, the solution to the problem of plane Poiseuille flow is identical for both theories. The pressure
field is only known up to an arbitrary additive constant with gradient
gradp ¼ �bex; with b ¼ constant ð46Þ

without loss of generality, we assume that b > 0. The solution for the velocity field can be decomposed into
classical and generalized contributions as
uðyÞ ¼ ucðyÞ þ ugðyÞ; ð47Þ

where
ucðyÞ ¼
bh2

2l
y
h

1� y
h

	 

ð48Þ
is the classical solution of the analogous problem for a Navier–Stokes fluid and
ugðyÞ ¼ �
bh2

2l
blL

h sinh h
L

sinh
h
L
� sinh

y
L
� sinh

h� y
L

� �
ð49Þ
arises from higher-order terms characterized by the gradient length L. In view of the signs of L, l, and h, the
constant
bl ¼
2L
h þ l

L

1þ l
L tanh h

2L

ð50Þ
is a non-negative dimensionless measure of the effective adhesion length. The specialized conditions of weak
and strong adherence arise respectively from the limits setting l! 0 and l!1.

Although the solution (49) is essentially one-dimensional in nature, we use it to establish a two-dimensional
boundary value problem to verify the finite-element formulation described in Section 4. The approach we follow
is to prescribe boundary conditions consistent with (49) on an arbitrary, finite ‘‘computational domain’’ Qh. We
then quantify the error in the numerical approximation to the velocity v and pressure p fields on the interior of
the domain using suitable error norms. This procedure requires a priori knowledge of the solution and is only
used for verifying the numerical formulation. More general boundary conditions will be discussed subsequently.

We take advantage of the symmetry of the solution (49) about the midplane of the channel and consider a
numerical domain with dimensions [0, h/2] · [h/2,h] as shown in Fig. 3. On the midplane of the channel, the
velocity field is constrained to be symmetric and a zero hypertraction is enforced. The top surface of the chan-
nel is considered fixed and we prescribe the generalized adherence conditions (12). It bears emphasis that while
the vertical component of the velocity field is fixed to vanish on all of the boundaries of the computational
domain, it is not constrained on the interior of the domain.

What remains is to designate boundary conditions on the vertical computational surfaces. Here, we choose
to prescribe the velocity field only at the left (inlet) boundary according to the exact solution (49). Zero hyper-
tractions are prescribed at the inlet and outlet.



Fig. 3. Computational domain and boundary conditions for the channel flow studies.
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To check convergence in the velocity field, we use the L2-norm of the error ev = vh � v. Since the pressure
field is known only up to a constant, the appropriate norm to check convergence is the L2-norm of the error
ep = gradph � grad p in the gradient of the pressure field. In the following, we report error norms that are nor-
malized by those of the solution.

We begin by examining the limiting case of l! 0, corresponding to weak adherence conditions on the chan-
nel walls. We set the gradient length L equal to h/4. Fig. 4 provides convergence results obtained using a
sequence of uniform meshes with equidistant nodal spacing dy = dx in each of the coordinate directions.
We observe a rate of convergence in the L2-error norm of the velocity field that lies between quadratic and
cubic. For a discretization of a classical Navier–Stokes problem using the isoparametric quadratic shape func-
tions, a cubic rate is optimal; cf. Hughes et al. [20]. In this case, the sub-optimal rate of convergence in the
velocity field is likely associated with a sub-optimal choice for the stability parameter. Engel et al. [9] reported
similar observations with the CDG method.

Fig. 5 juxtaposes the solution (49) and the finite-element approximation vh obtained using a 4 · 4 uniform
mesh. The latter is shown above the midplane y/h = 0.5 and the numerical approximation is seen to be indis-
tinguishable from the solution.

For the pressure field, we obtain nearly a quadratic rate of convergence in the L2 norm of ep (essentially, the
H1 semi-norm of the pressure field). We are not aware of any studies detailing the accuracy of the pressure
approximation for the mixed formulation described herein. However, this rate is better than expected based
on the best approximation error for a linear field.

Fig. 6 compares numerical and exact solutions for the case of generalized adherence conditions (l > 0) on
the channel wall, using various ratios l/L of adherence length to gradient length. The numerical results were
Fig. 4. Convergence results for the benchmark problem for weak adherence boundary conditions.



Fig. 5. Contour plot of velocity field normalized by bh2/2l for weak adherence boundary conditions. The finite-element approximation is
shown above the channel center y/h = 0.5 and the solution (49) is shown below this line.

Fig. 6. Exact and numerical velocity profiles at the outlet boundary of the computational domain for various ratios l/L of adherence
length to gradient length. All numerical results were obtained on a 4 · 4 uniform mesh.
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obtained at the outflow (x/h = 0.5) boundary of the computational domain. All of the numerical results shown
in Fig. 6 are for a uniform mesh of 4 · 4 elements. The results indicate an excellent match between the numer-
ical and exact velocity fields, particularly given the coarseness of the mesh. Fig. 7 shows the contours of the
normalized pressure gradient obtained for the particular choice of l/L = 0.1. As expected, the pressure gradi-
ent is almost constant and the maximum error is less than 3%.

A convergence study with generalized adherence boundary conditions on the channel walls yields results
that are qualitatively similar to those arising for weak adherence boundary conditions. Fig. 8 compares the
relative error norms for the two cases. The generalized adherence results were obtained using l/L = 0.1. We
report that the rates of convergence are nearly unaffected with generalized adherence boundary conditions,
and a slight increase in accuracy was observed with increasing mesh refinement.

As a final verification test, we report results using skewed meshes. Fig. 9 shows velocity contours for the
case of generalized adherence boundary conditions with the skewed mesh geometry superimposed over the
finite-element approximation to v. The numerical results once again compare favorably to the solution.

We note that this benchmark problem also permits us to examine other choices for boundary conditions
and their effect on the numerical solution. Heywood et al. [21] proposed a simple method to prescribe a pres-
sure drop between artificial inlet and outlet boundaries such as the left and right boundaries in Fig. 3. Writing



Fig. 7. Contour plot of the normalized pressure gradient ex Æ gradph/b for channel flow with generalized adherence boundary conditions
(l/L = 1.0).

Fig. 8. Convergence results for the benchmark problem for weak and generalized adherence boundary conditions.

Fig. 9. Contour plot of velocity field normalized by bh2/2l for generalized adherence boundary conditions, with l/L = 1.0. The finite-
element approximation and smoothed mesh is shown above the channel center y/h = 0.5 and the solution (49) is shown below this line.
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�P for the desired pressure drop between the artificial inlet and outlet boundaries, the approach amounts to
replacing the prescribed velocity boundary condition at the inlet with a traction
t ¼ �Pex: ð51Þ

Using such an approach, we obtain nearly identical results to those obtained using the boundary conditions
described in Fig. 2. This approach will be used in Section 5.3 to study flow through a channel with a step.

In the above studies, the accuracy and rate of convergence in the velocity and pressure fields were found to
be sensitive to the particular choice of the proportionality constants Cv and Cp for the stability terms sv and sp,
respectively. Without pressure stabilization, for example, the pressure field does not converge in some cases
and the rate of convergence in the velocity field typically decreases from those reported above. While we have
not conducted an exhaustive parametric study, we have found the most consistent results to be obtained using
Cv = 14 and Cp = 0.2. We suggest that such a convergence study with a benchmark problem provides a mech-
anism to find stability parameters that are applicable to other problems with the same choice of material
parameters. Indeed, the results presented in the following sections were obtained with this approach. However,
better results could likely be obtained by using stabilization parameters that are more closely related to the
solution. This is an area for future work.

5.2. Flow past a cylinder

The second benchmark problem that we consider involves steady, laminar flow past a right circular cylin-
der. We consider a domain of height h and width w containing a circular obstacle of diameter d (Fig. 10). The
boundary conditions for the hypertraction mS and the horizontal and vertical components u and v of the
velocity field are indicated in the figure. On the cylinder surface, no-slip conditions are considered along with
generalized adherence boundary conditions (l > 0). A uniform velocity in the x-direction at the inlet boundary
is applied. The computational domain is taken as h/w = 1, and h/d = 4. We find that the mesh shown in
Fig. 11 of 288 quadratic elements provides sufficiently converged results for all of the problems presented
below.

Fig. 12 compares numerical approximations for the horizontal component of the velocity field for the clas-
sical Navier–Stokes theory and the gradient theory. The results correspond to generalized adherence boundary
conditions (l > 0) on the cylinder surface, with L/d = 1.0 and l/L = 10.0. The two solutions are seen to be qual-
itatively quite similar, with perhaps the greatest difference occurring in the vicinity of the cylinder. This is not
surprising given the generalized adherence condition there.

Fig. 13 displays contour plots of the vertical component of the velocity field for the classical Navier–Stokes
theory and the gradient theory. Only minor qualitative and quantitative differences between the two flows can
be observed, but the adherence near the cylinder boundary is clearly identifiable. Fig. 14 shows the pressure
distributions for the classical (left) and gradient (right) flows. As expected, these results show a pressure drop
as the flows pass the cylinder. Moreover, we find that the pressure field upstream of the cylinder for the gra-
dient theory is greater than that predicted by the classical theory.
Fig. 10. Problem description for flow past a cylinder with velocity and hypertraction boundary conditions.



Fig. 11. Mesh for studies of flow past a cylinder.

Fig. 12. Contour plots of the normalized horizontal velocity component for the classical theory (left) and the gradient theory (right) with
generalized adherence boundary conditions. Results for the gradient theory correspond to L/d = 1.0 and l/L = 10.0.

Fig. 13. Contour plots of the normalized vertical velocity component for the classical solution (left) and the gradient (right) solution with
generalized adherence boundary conditions. Results for the gradient theory correspond to L/d = 1.0 and l/L = 10.0.
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Fig. 15 compares the horizontal velocity components for the classical theory with those of weak- and gen-
eralized-adherence boundary conditions under the gradient theory. The numerical results correspond to the
flow profiles along a vertical line along the middle (x/h = 0.5) of the computational domain. All of the
numerical results shown in the figure were obtained using a mesh of 288 elements. The results indicate that



Fig. 14. Contour plots of pressure field for the classical solution (left) and the gradient (right) solution with generalized adherence
boundary conditions.
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Fig. 15. Comparison of the normalized horizontal velocity component profiles in the middle (x/w = 0.5) of the computational domain for
the classical theory and weak- and generalized-adherence boundary conditions on the cylinder surface with the gradient theory.
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the velocity profiles at small length scales are smaller than those of classical theory. Moreover, the slope
around the cylinder decreases with increasing gradient and adherence lengths (L and l).

5.3. Step flow

We consider a steady, laminar flow through a channel with a sudden area expansion as shown in Fig. 16.
We prescribe a pressure drop �P between the inlet and outlet boundaries as shown in the figure. The vertical
component of the velocity field is also fixed to zero at the inlet and outlet boundaries. On the top and bottom
surfaces, no-slip boundary conditions are enforced, and weak adherence (l = 0) conditions are considered for
v= 0 ,mS = 0

v= 0 ,mS = 0

w1

w2

2h12h2t = Pex

u=free
v = 0

mS = 0

Fig. 16. Geometry and boundary conditions for the step flow problem. The coordinates in the directions downstream and out of the plane
are x and z.



T.-Y. Kim et al. / Journal of Computational Physics 223 (2007) 551–570 567
the gradient theory. The dimensions of the computational domain are taken such that w1/w2 = 3, h1/h2 = 5/2,
and h1/w1 = 5/6.

Figs. 17 and 18 provide contour plots of the numerical solution of the horizontal and vertical velocity com-
ponents for classical (left) and gradient (right) flows. The numerical results were obtained using a uniform
mesh of 176 elements. As expected, the results reveal a qualitative difference between classical and gradient
theories. Fig. 19 provides the pressure comparison at the same contour level between classical and gradient
theories. The results clearly show the same net pressure drop between inlet and outlet boundaries. A profile
of the horizontal velocity field at the outlet of the computational domain is shown in Fig. 20. The gradient
Fig. 17. Contour plot of normalized horizontal velocity component predicted using the classical theory (left) and the gradient theory
(right) with weak adherence boundary conditions.

Fig. 18. Contour plot of vertical velocity component for the classical solution (left) and the gradient (right) solution with weak adherence
boundary conditions.

Fig. 19. Contour plot of normalized pressure fields for the classical (left) and gradient (right) theories for the step flow problem.
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568 T.-Y. Kim et al. / Journal of Computational Physics 223 (2007) 551–570
theory clearly predicts smaller flow rates compared to the classical for the same pressure drop across the step.
The results for the gradient theory shown in Figs. 17–20 were all obtained using L/h2 = 0.25.

We next examine the variation in flow rates with aspect ratio h1/h2 for a fixed pressure drop. We calculate
the flow rates Q for a sequence of steps ranging from h1 = h2 (the straight channel) to h1 = 2.5h2. We use the
flow rate Q1 obtained for the straight channel in each case (classical and gradient) to normalize the subsequent
results. Fig. 21 shows the normalized flow rates as a function of step ratio h1/h2 for a sequence of increasing
ratios L/h2 of gradient to physical lengths. The results predict that the flow rate of the classical theory is always
greater than that of the gradient theory. Moreover, flow rates are seen to decrease relative to the straight chan-
nel rate as the gradient length is increased relative to the physical length. We note that the introduction of the
corner to the problem results in a marked decrease in flow rates (before a more gradual increase with increas-
ing step size) for large L/h2. This may be attributable to the increased role that corner singularities may play
with regard to dissipation for the gradient theory.

6. Summary and conclusions

In this paper, we described a finite-element method for a second-gradient theory of fluid flow. The second
gradient theory incorporates gradients of the vorticity field that are power-conjugate to a hyperstress in a
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non-standard principle of virtual power. The theory gives rise to a flow equation that is fourth-order in the
velocity field, and incorporates associated higher-order boundary conditions. Rather than employing C1-con-
tinuous basis functions or a fully mixed approach, we base our method on a recent formulation for fourth-
order elliptic problems that employs C0-continuous basis functions. Continuity of higher-order velocity deriv-
atives is then enforced between elements using a variation of Nitsche’s [11] method, involving jump quantities
across interelement boundaries. Using this formulation, we based our approach on second-order elements that
are stable for the classical Navier–Stokes theory for incompressible fluid flow. Additional terms were added to
properly stabilize the discontinuous pressure field.

Using our finite-element method, we then examined several numerical examples. First, the method was
verified using an analytical solution to a Poiseuille flow problem derived by Fried and Gurtin [4]. An excel-
lent match between numerical and analytical results was obtained, as were near-optimal rates of conver-
gence in appropriate error norms for the velocity and pressure fields. The numerical method was also
shown capable of capturing effects for a range of boundary conditions stemming from the second-gradient
theory, from weak to strong adherence. Results were obtained using stabilization parameters that scale with
the second-gradient moduli and the inverse of the mesh spacing. Additional problems of flow past a cylinder
and step flow were then examined, and numerical predictions based on the second-gradient theory were
compared to those of the classical theory. Consistent with the additional sources of dissipation associated
with the hyperstress and the generalized adherence boundary conditions, the second-gradient theory predicts
lower flow rates and shows a marked difference near boundaries due to the effect of the adherence boundary
conditions.

This work is based on a theory of fluid flow that involves the gradient of the vorticity field [5]. It shares
several common features with an earlier theory based on the full second-gradient of the velocity field [4].
The earlier theory involves an additional hyperpressure field not present in the vorticity-based theory consid-
ered here. A numerical formulation based on the earlier theory would thus require a three-field approach for
which it would be more difficult to ensure stability. Since both theories yield identical flow equations, however,
we do not anticipate significant qualitative differences in the flow profiles.

A drawback to the current method is the need to identify suitable parameters sv and sp for the velocity and
pressure stabilization, respectively. As the method is relatively new, closed-form expressions are not currently
available and for a given simulation there exists a range of both parameters that will yield accurate results.
Accordingly, we intend to examine methods that can better tie the stabilization parameters to the solution
in a particular problem. Along these lines, Mourad et al. [22] have recently developed a method to relate
the stabilization parameters in Nitsche’s [11] method to the relationship between coarse and fine scales in a
solution. In principle, such a strategy could be applied to the present work, provided that a suitable approx-
imation for the fine-scale can be identified.

Future work will focus on extending our approach to time-dependent flows beyond the steady Stokes flows
considered herein. This work should serve as an excellent starting point for a formulation based on the gen-
eralization of the LANS-a theory for turbulent flow obtained by Fried and Gurtin [5], for example.
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